# Difference between revisions of "Langmuir Probe"

(Created page with "=Description of the Experiment= <!--thumb|Figure 1: Photo of the experimental setup--> This experiment's purpose is the determination of t...") |
|||

Line 28: | Line 28: | ||

==Determination of the electron temperature and density== | ==Determination of the electron temperature and density== | ||

+ | The Langmuir probe uses one or more electrodes which are placed inside the plasma, in this case one of the filaments of the head. Measuring the current collected by the probe while applying a triangular wave, will provide the I-V characteristic that will be analysed later. | ||

+ | When the probe is electrically isolated, a plasma sheath is formed in the interface between the plasma and the probe. To compensate for the higher mobility of the electrons, the probe will attain a floating potential,\(V_f\), negative with respect to the plasma potential, \(V_p\). The density at the sheath entrance is roughly half of the density away from the probe. | ||

+ | The probe voltage, \(V_s\), has been changed with respect to the ground set by the winding filament using a variable voltage source. If the polarization of the probe, compared to the plasma, is negative enough, all the electrons will be repelled and the ion flux to the probe is independent of the tension applied. In a totally ionized plasma, this ion saturation current is described by the following expression: | ||

+ | \[ i^+_{sat} = j^+_{sat} A_s = e \, n \, c_s \, A_s \] | ||

+ | |||

+ | Where \(j^+_{sat}\) is the current density, \(A_s\) is the contact surface of the probe, \(e\) is the electron charge, \(n\) is the ion density in the plasma, \(c_s\) is the ion sound speed. | ||

+ | |||

+ | If we polarise the probe positively, the voltage drop in the sheath is reduced and electrons will be able to reach the probe. Taking a Maxwell distribution for the speed of the electrons, the relation between current and tension will be: | ||

+ | \[ i = i^+_{sat} \left( 1- e^{\frac{e}{k T_e} (V_s - V_f)} \right) \] | ||

+ | |||

+ | Where \(T_e\) is the electron temperature. This expression assumes that there is only one probe and that it is non-perturbative. | ||

+ | |||

+ | From the obtainend it is possible to extract an estimate for the floating potential, \(V_f\). This is done by taking the value at which the characteristic crosses zero. | ||

+ | |||

+ | It will also be easily seen that the data does not follow a the regular characteristic on the ion saturation side, it should be constant instead of having a slope. This has to do with the fact that the probe is cylindrical. To correct for this, a linear function is fitted on this side and the slope is subtracted. | ||

+ | |||

+ | But, in doing this we impose a condition of cold ions, which means that there will be no ion saturation current, since the ions aren't moving. However, we want to get the density, so we have to make another correction, which corresponds to add the value of current in point where we know the current is completely due to ions, namely to values voltage much lower than the floating potential (in this case we use two times the floating potential, hence the need for our initial estimate). | ||

+ | |||

+ | After that, the experimental data has to be adjusted to the equation presented in above. From the fit the \(T_e\) can be extracted as well as the ion saturation current, \(i^+_{sat}\) and the floating potential \(V_f\) which should have a value close to the one we determined empirically. | ||

+ | |||

+ | By knowing the area of the probe and the speed of sound in the ions of the plasma, one can determine the electron density in the plasma. | ||

+ | Since \(c_s = \sqrt{\dfrac{k T_e}{M}}\), and the fact that the probe is \(1cm\) and has a diameter of \(0.2mm\) we can use the \(i^+_{sat}\) to determine the density. | ||

=Links= | =Links= |

## Revision as of 21:43, 10 July 2013

## Contents

# Description of the Experiment

This experiment's purpose is the determination of the capacity of a variable coax cylindrical capacitor. It has two sections, a first with a Polystyrene dielectric, and a second with air, allowing the determination of the relative dielectric constant of Polystyrene.

**Ligações**

- Video: rtsp://elabmc.ist.utl.pt/langmuir.sdp
- Laboratory: New Experiments in elab1.ist.utl.pt[1]
- Control room: Langmuir Probe
- Level: ****

# Experimental Apparatus

The main chamber consists of a pirex cylinder on which a modified Filament Head is placed to function as a Langmuir probe.

The central filament of 0.2mm diameter has been covered with alumina tube leaving only a 1cm tip exposed to the plasma. The two outer filaments are connected to an "of the shelf" RF generator which ionizes the gas and generates the plasma. This is a simple 3.5W generator which outputs a 50kHz AC signal with 1kV amplitude. To improve stability and homogeneity of the electrical field two molybdenum plaques have been attached using low vapour pressure epoxy, to each outer filament.

# Protocol

## Determination of the electron temperature and density

The Langmuir probe uses one or more electrodes which are placed inside the plasma, in this case one of the filaments of the head. Measuring the current collected by the probe while applying a triangular wave, will provide the I-V characteristic that will be analysed later.

When the probe is electrically isolated, a plasma sheath is formed in the interface between the plasma and the probe. To compensate for the higher mobility of the electrons, the probe will attain a floating potential,\(V_f\), negative with respect to the plasma potential, \(V_p\). The density at the sheath entrance is roughly half of the density away from the probe.

The probe voltage, \(V_s\), has been changed with respect to the ground set by the winding filament using a variable voltage source. If the polarization of the probe, compared to the plasma, is negative enough, all the electrons will be repelled and the ion flux to the probe is independent of the tension applied. In a totally ionized plasma, this ion saturation current is described by the following expression: \[ i^+_{sat} = j^+_{sat} A_s = e \, n \, c_s \, A_s \]

Where \(j^+_{sat}\) is the current density, \(A_s\) is the contact surface of the probe, \(e\) is the electron charge, \(n\) is the ion density in the plasma, \(c_s\) is the ion sound speed.

If we polarise the probe positively, the voltage drop in the sheath is reduced and electrons will be able to reach the probe. Taking a Maxwell distribution for the speed of the electrons, the relation between current and tension will be: \[ i = i^+_{sat} \left( 1- e^{\frac{e}{k T_e} (V_s - V_f)} \right) \]

Where \(T_e\) is the electron temperature. This expression assumes that there is only one probe and that it is non-perturbative.

From the obtainend it is possible to extract an estimate for the floating potential, \(V_f\). This is done by taking the value at which the characteristic crosses zero.

It will also be easily seen that the data does not follow a the regular characteristic on the ion saturation side, it should be constant instead of having a slope. This has to do with the fact that the probe is cylindrical. To correct for this, a linear function is fitted on this side and the slope is subtracted.

But, in doing this we impose a condition of cold ions, which means that there will be no ion saturation current, since the ions aren't moving. However, we want to get the density, so we have to make another correction, which corresponds to add the value of current in point where we know the current is completely due to ions, namely to values voltage much lower than the floating potential (in this case we use two times the floating potential, hence the need for our initial estimate).

After that, the experimental data has to be adjusted to the equation presented in above. From the fit the \(T_e\) can be extracted as well as the ion saturation current, \(i^+_{sat}\) and the floating potential \(V_f\) which should have a value close to the one we determined empirically.

By knowing the area of the probe and the speed of sound in the ions of the plasma, one can determine the electron density in the plasma. Since \(c_s = \sqrt{\dfrac{k T_e}{M}}\), and the fact that the probe is \(1cm\) and has a diameter of \(0.2mm\) we can use the \(i^+_{sat}\) to determine the density.